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Using automation and machine learning to maximize 
tool use in turning centers for better surface finish
Akash D. Pandya 1, Ajay M. Patel 1, Bhavesh R. Hindocha 2, Manoj Kumar 3, Ankit D. Oza 4,*,  
Kiran S. Bhole 5, Manoj Kumar 6 & Manish Gupta 7

In modern manufacturing industries, automated machining systems have become a necessity. However, optimizing resource 
utilization and achieving a good surface finish remain challenging tasks. Excessive tool usage and poor surface finish are common 
problems encountered in turning centers, which affect productivity and product quality. In this research, we propose an approach 
that leverages automation and machine learning techniques to maximize tool use and improve surface finish. Our objective is to 
investigate the relationship between tool life and surface roughness and to develop a method that can optimize cutting parameters 
for turning centers. We have conducted an experimental study to evaluate the proposed approach, which involves the automatic 
determination of cutting parameters based on machine learning algorithms, and concluded a cutting speed of 43.10 m/min, the 
surface finish achieved for aluminum material was 1.98 µm. In the case of mild steel material, the surface finish was 12 µm at a 
cutting speed of 25.13 m/min. Similarly, for cast iron material, the surface finish was 8.45 µm at a cutting speed of 30.16 m/min. 
Our results show that the proposed method outperforms the traditional manual method in terms of surface finish, tool usage, and 
machining time. Our approach can be applied to other machining systems, providing a practical and effective solution to improve the 
efficiency and quality of machining processes. This paper presents an experiment that explores the relationship between tool life 
and surface roughness. Furthermore, an automated approach is proposed for eliminating G code in machining, which can improve 
the efficiency of machine tools and result in a better surface finish. Objective: To maximize tool use and improve surface finish in 
turning centers by incorporating automation and machine learning. Idea: This research aims to explore the use of automation and 
machine learning in turning centers to optimize the cutting parameters and achieve a better surface finish. Description of the idea: 
The study was conducted by performing experiments on three different materials, i.e., aluminum, mild steel, and cast iron. The cutting 
parameters, including spindle speed, feed, and depth of cut, were controlled by a programmable logic controller (PLC) integrated 
with a tachometer and Vernier scale. The surface finish was measured using a surface roughness tester, and the data was analyzed 
using a supervised machine learning algorithm.

Keywords: Lathe; CNC Machining; Optimum Point; Machine Learning in Manufacturing; PLC.

INTRODUCTION
Achieving complete automation in manufacturing is essential for enhanc-
ing productivity and quality, minimizing errors and waste, improving 
safety, and introducing greater flexibility to manufacturing procedures. 
The fundamental factors that directly and immensely affect the surface 
finish and tool life in machining are feed, depth of cut, and spindle speed1. 
These machining factors are responsible for defects like Crater wear, 
Notch wear, Hairy surface finish, Flank wear, Burr formation, etc. For 

tool life effectiveness, MRR is the most considerable aspect. And MRR 
is influenced by spindle speed and depth of cut. If the objective is to get 
a better tool, then the focus has to be on the depth of cut and spindle 
speed2. The friction force between tool and workpiece is also a prime 
factor for surface finish and tool life, which is also immensely dependent 
on cutting parameters and cutting fluid3.

To convert our conventional lathe machine into a semi-automatic 
lathe machine RETROFITTING term is used. Automating the lathe 
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requires the automation of all three cutting parameters, namely the speed, 
feed, and depth of cut. In which feed and depth of cut are controlled 
manually, and a motor operates spindle speed. To automate the lathe feed 
and depth of cut should operate automatically with the help of a motor.

The retrofitting process for conventional lathe machines into 
semiautomatic control machines demands two key elements, namely, 
mechanical and electronic parts. In the mechanical part, a design is 
made to feed the stepper motor to the lead screw. On the other hand, 
in the electronics part, an electronic circuit containing the motor driver 
circuit is designed to control the motor movement with the help of 
programmable logic controller (PLC)4. So from this research proposal, 
the conventional machine can be converted into a CNC machine. In CNC 
machines, for machining workpieces, G-code/M-code program have to 
be created. Which is developed by a skilled person, and verify that code 
is in working status with the concerning our final desired shape. So it 
takes a particular time. CNC converter and the retrofitted CNC lathe 
realized G-code free machining. In this, C language is used as program-
ming language and the automatic translation of a STEP-NC program 
into 6K language codes, which is a native language for CNC machine, 
and according to this CNC machine navigated5. To control motor RPM 
according to PLC programmed memory servo drives or VFD can be used 
according to motor type6. By using a PLC and servomotor for converting 
to an automatic machine, minimize cost and reduce machine downtime 
is achieved7. Selecting the optimum cutting parameters immensely affects 
the surface finish and tool life. The friction force also assists in selecting 
the optimum cutting point, which can be used as an input parameter8. 
An intelligent system must examine and decide on the process due to 
the difficulty of accurately describing it in any mathematical model9–11. 
Antony et al.12 developed an expert knowledge-based system capable 
of detecting potential machine tool failures brought on by unexpected 
occurrences. The goal of this study is to use the Six Sigma technique to 
increase the material productivity of the printing process13. Modern 
production systems are extremely complicated and require thorough 
analysis before being put into practice. Different models have been put 
forth to evaluate these systems14. The spindle speed and feed rate directly 
influence the surface roughness. It is observed that the surface roughness 
increases with increased feed rate and is higher at lower speeds, and 
vice versa for all feed rates15. The use of online monitoring technology 
in CNC machining operations eliminates the need for post-process 
quality control and is essential for increasing automation, productivity, 
and dependability while lowering costs and production times16–18. For 
finding optimum parameters, machining experiments with various 
input parameters is using Taguchi Design of Experiments (DOE)22–24. A 
machine learning strategy ANN was used to predict cutting speed from 
the standard machining handbook. This cutting speed is predicted with 
respect to the hardness of the material9. Moreover, geometric algorithms 
of machine learning strategy are used for optimizing geometry design 
on the base objective function25. Proper selection of cutting parameters 
and tools can create longer tool life and lower surface roughness26. For 
controlling and maintaining surface finish according to our desired 
output, close-loop control system logic observes and gives an order to 
the controller according to the output. In order to improve productivity 
during the part production processes, optimized machining parameters 
for CNC machining operations can be obtained by applying cutting-edge 
machine learning methods27–38.

All the study research is done to predict new values from existing 
data. There is not any method or approach presented to use this data in 
any conventional or automatic machine. So, in this study, an attempt has 
been made to eliminate G code and follow the optimum point of cutting 
parameters for turning operation machining from which surface finish 
and tool life can be better. And also, another approach has been made 
to convert conventional lathe machines to automatic lathe machines. 
Optimum point of the cutting parameter was obtained by experimental 
machining.

Methodology
To develop a coding-free CNC machining system, it is essential to identify 
the ideal cutting parameters for each material. This reference data set of 
machining parameters can be used to achieve a better-quality surface 
finish and prolong the lifespan of tools without the need for manual 
coding. In order to fully automate the machining process, conventional 
lathe machines can be converted into automatic lathes using PLCs. These 
controllers can operate the automatic lathes based on preset cutting pa-
rameters for each material. As a result, the machining process can become 
more efficient and accurate with less human intervention. To determine 
the optimum cutting parameters, an experiment was conducted on a 
conventional lathe machine using three primary machining parameters: 
feed (f), speed (n), and depth of cut (a). Turning operations were carried 
out on three different materials, including mild steel, aluminum, and 
cast iron.

HSS TOOL and CARBIDE TOOL are two different types of tools 
used in machining processes. Mild steel and aluminum workpieces are 
50 mm in diameter and 175 mm in length, whereas cast iron workpieces 
are 60 mm in diameter and 205 mm in length. The workpiece is separated 
into six 23-mm sections for ease of machining with various cutting 
parameters. With a traditional lathe machine, all the workpieces and 
tools are machined using different cutting parameters while dry. The 
KIRLOSKAR TURNMASTER 40 lathe is used for the machining process.

Figure 1 Lathe machine KIRLOSKAR TURNMASTER 40.

Figure 2 Mild steel workpiece with HSS tool.
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Workpiece material with respect to machining tool: Fig. 2 shows mild 
steel workpiece with an HSS tool and Figs. 3 and 4 show aluminum and 
cast-iron workpiece with a carbide tool.

After machining experiments with different cutting parameters, the 
surface finish is measured using the surface roughness tester. As shown in 
Fig. 5, the portable surface roughness tester Surftest SJ-210 series is used. 
And to estimate tool life for all the cutting parameters, Taylor’s equation is 
used. Mathematically, the life of a cutting tool is derived from the equation

T = cvaf bdγ

T = cutting time, c = Taylor constants, v = cutting speed, f = feed, d = 
depth of cut, α, β, g = exponent.

Methods: The experiments were conducted using a retrofitted lathe, which 
was controlled by the PLC. The cutting parameters were varied for each 
material, and the surface finish was measured after each experiment. 
The obtained data was analyzed using a supervised machine learning 
algorithm to identify the optimal cutting parameters for achieving a 
better surface finish.

Design of the experiment
For all machining, a cutting parameter is taken with respect to a given 
factor. The Taguchi Method is utilized to obtain the results of the experi-
ment. The objective of the design of an experiment is to determine the 
variables in a process that are more effective in-process. The selection of 
these DOE parameters is based on achieving an improved surface finish, 
as shown in Table 1.

Optimum point finding technique
The machine learning technique is used to find one effective point for 
machining. In the machine learning technique, a supervised machine 
algorithm is used because in this research, predicted values are not taken 
as an optimum point. Linear regression is used to find an optimum 
point between the dependent value and the independent value. A linear 
regression algorithm is used because it takes an input of existing data 
and gives a constant output with respect to an input. From the regression 
method, identify which independent variable has the most impact on a 
dependent variable. 

An ANOVA table is made for the analysis of regression result. From 
the acquired deviation between the predicted most impactful and experi-
mented values from this elementary equation. And also, a significant level 
of result can be determined for the predicted value.

Retrofitting/automation of conventional lathe
To automate a conventional lathe machine, all three cutting param-
eters—speed, feed, and depth of cut—must be operated automatically. 
While spindle speed is controlled by the motor, feed and depth of cut 
are typically controlled manually in conventional machines. To automate 
these operations, a 1 hp DC motor with a DC supply is connected to the 
lathe machine as shown in Fig. 6. Initial tests were conducted to select 
the appropriate motor, and a 1 hp motor was found to be sufficient for 
automating the machining process.

Figure 3 Aluminum workpiece with a carbide tool.

Figure 4 Cast iron workpiece with a carbide tool.

Figure 5 Portable surface roughness tester Surftest SJ-210 series.

Table 1 Design of experiment.

Spindle speed (RPM) Feed Depth of cut

Lowest (50) Lowest/low/medium Constant

Low (160) Lowest/low/medium Constant

Medium (280–710) Lowest/low/medium Constant

High (1,600) Lowest/low/medium Constant

Highest (2,240) Lowest/low/medium Constant
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Two techniques were identified for mounting the motor to the lathe 
machine. The first approach involved mounting a 1 hp DC motor to the 
carriage box with the help of a clamp and bush. The second approach 
involved mounting one motor to the carriage box for cross-sliding 
movement and the other motor to the lead screw with a bush and proper 
stage arrangement as shown in Fig. 7. The surface finish results of the 
second approach were found to be better than the first, so this approach 
was chosen for automatic machining.

Spindle speed is set using the existing mechanism of the machine. 
After the two motors are mounted, they are connected to a DC supply 
for functioning according to a voltage supply. Motor RPM is controlled 
according to requirements. A PLC is used as the controller, which directs 
the motor driver based on programmed instructions for movement in 
both the forward and reverse directions. A ladder diagram is used to 
create programming logic in the PLC. The Siemens S7200 model PLC is 
used for controlling eight inputs and six outputs. Ladder logic is created 
with reference to a timer.

The PLC is attached to the headstock of the lathe machine close to all 
the motors using a distinctive box. The relation between time and distance 
(workpiece length) is developed as an equation from reference machined 
length and time. The effective length of the turning operation must be 
entered for the machining operation. Programming logic calculates 
timing for both motor on-off and executes machining from the equation. 
For every material, timing varies because of its structural property and 
hardness. A reference equation is formed for every material, which is a 

one-time process for the automatic approach. The PLC is programmed 
with the help of MicroWIN software.

Spindle speed is settled directly with the existing mechanism of the 
machine for machining operation. After two motors are mounted with 
the machine, the motors are connected to a DC supply for functioning 
according to a voltage supply and from this, controlling of the motor 
RPM according to our requirements is achieved. 

Figure 6 DC motors are directly mounted to the carriage box of the 
lathe machine.

Figure 7 The first motor to the carriage and the second motor to the 
lead screw of the lathe machine.

Figure 8 PLC ladder diagram (1).
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Ladder diagram programming is done for 
cross sliding motor and lead screw motor on 
the timing base and RPM base. Machining 
starts from the home position, which starts 
from the limit switch attached. When the limit 
switch is pressed, it gives input to the PLC by 
M0.1 and M0.2. For depth of cut motor Q0.0 
AND Q0.1 and for feed motor Q0.2 AND 
Q0.3 are taken as output port. And from that, 
reverse forward motion is also actuated from 
relay. At the end of the ladder diagram, all the 
timer is set with respect to the dimension of 
the machining for diameter and for length. In 
the timer, all the timing is set in milliseconds 
for motor on/off timing.

For automation, a material-recognizing 
sensor is mounted near the chuck. INDUC-
TIVE FACTOR 1TYPE sensor is used for 
sensing purposes. From sensor gives a differ-
ent signal in the form of a factor number to 
the PLC, and according to the factor, material 
is discovered and its timing distance equation 
is getting into running mode. Figures 8 and 
9 show the ladder diagram of PLC program-
ming. Table 2 shows the sensor output data 
for different materials.

The system automatically determines the 
optimal feed and depth of cut by selecting the ap-
propriate motor RPM using a PLC to control the 
AC/DC motor drive. The optimal point varies 
for each material, and the sensor signal is used to 
control the motor without human intervention. 
A GUI with sensor input can also be used for 
direct control without the need for a PLC.

For reference position of the tool con-
cerning the workpiece two limit switches 
(contact sensor) are used from which at the 
beginning time of machining the tool is set 
to a home position. From which it starts cal-
culating timing for machining. The distance 
has to be between the workpiece and the 
home position accurately to start machining 
accurately. In the latest PLC systems like the 
S71500 SIEMENS and G364 MITSUBISHI, 
this type of arrangement is not required. In 
this controller, home position is directly taken 
with logic by creating the ladder diagram.

Application of the findings of this research 
can be used to improve the performance 
and accuracy of turning centers. The use of 
automated systems and machine learning 
algorithms can help optimize the cutting 
parameters and tool life, resulting in better 
surface finishes and reduced downtime.

Second, the results of this research can be 
applied to a wide range of materials used in 
manufacturing processes, such as aluminum, 
mild steel, and cast iron. This can help in 
selecting the most suitable cutting parameters 
for specific materials, leading to improved 
efficiency and cost-effectiveness.

Third, the application of this research  
can result in reduced human error and 
variability, leading to better consistency in the 

Figure 9 PLC ladder diagram (2).
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manufacturing process. This can also lead to increased productivity and 
cost savings in the long run.

Overall, the application of this research can benefit various industries 
that rely on turning centers for their manufacturing processes, including 
automotive, aerospace, and general engineering.

RESULT AND DISCUSSION
The authors conducted experiments on different materials using dif-
ferent types of cutting tools. In the case of a mild steel workpiece with 

an HSS tool, the best surface finish and tool life were obtained at a 
spindle speed of 2240 RPM, a feed of 0.32 mm/rev, and a depth of cut 
of 0.5 mm. The surface roughness was 3.92 µm and discontinuous small 
chips were produced during machining. For an aluminum workpiece 
with a carbide tool, the optimal cutting parameters were a spindle 
speed of 710 RPM, a feed of 0.18 mm/rev, and a depth of cut of 0.5 
mm, resulting in a surface roughness of 1.14 µm with continuous long 
chips produced during machining. For the cast iron workpiece with 
a carbide tool, the best surface finish and tool life were achieved at a 
spindle speed of 1400 RPM, a feed of 0.18 mm/rev, and a depth of cut 
of 0.5 mm, resulting in a surface roughness of 6 µm with segmented 
chips produced during machining. These findings demonstrate that 
the optimal cutting parameters are dependent on the material and the 
type of cutting tool used.

 �Blended graphical representation for all the machining:

Figure 11 shows the overall value of surface finish decreases when 
cutting speed and feed increases. And for tool life, it increases with cutting 
speed and feed increases.

Machine learning observation for the optimum point  
of the machining experiment
The algorithm brings the most effective point as predicted values, and 
from the ANOVA table’s residual output observation table plot deviation 
between predicted values and experimented values can be found. A table 

Table 2 Sensor output in the form of a factor.

Material Correction factor

Steel 1.00

Cast iron 0.93 . . . 1.05

Stainless steel 0.60 . . . 1.00

Nickel 0.65 . . . 0.75

Brass 0.35 . . . 0.50

Aluminum 0.30 . . . 0.45

Copper 0.25 . . . 0.45

Table 3 Experimental machining data for mild steel.

Spindle speed (RPM) Feed (mm/rev) Depth of cut (mm) Cutting speed (m/min) Ra (µm)

50.00 0.18 0.50     7.85 13.25

0.25 0.50     7.85 12.93

0.32 0.50     7.85 14.11

160.00 0.18 0.50   25.13 11.57

0.25 0.50   25.13 13.27

0.32 0.50   25.13 11.47

280.00 0.18 0.50   43.10   7.10

0.25 0.50   43.10   8.55

0.32 0.50   43.10 10.75

450.00 0.18 0.50   69.27   4.36

0.25 0.50   69.27   6.63

0.32 0.50   69.27 11.16

560.00 0.18 0.50   84.45   6.22

0.25 0.50   84.45   9.80

0.32 0.50   84.45 11.00

710.00 0.18 0.50 107.07   7.56

0.25 0.50 107.07   8.00

0.32 0.50 107.07   9.23

2240.00 0.18 0.50 330.75   6.77

0.25 0.50 330.75   8.28

0.32 0.50 330.75 11.30

2240(c.t) 0.18 0.50 330.75   3.97

0.25 0.50 330.75   4.67

0.32 0.50 330.75   3.92
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Figure 10 Setup for an automatic/retrofitted lathe. (a) computer, (b) plcs7200, (c) DC supply, (d) motor controller (PWM), 
(e) inductive sensor, (f) limit switch, (g) lathe-motor setup.

Spindle speed (RPM) Feed (mm/rev) Depth of cut (mm) Cutting speed (m/min) Ra (µm) Tool life (min)

50.00 0.18 0.50     7.85 1.36   62.41

0.25 0.50     7.85 1.74   80.37

0.32 0.50     7.85 2.44   96.02

160.00 0.18 0.50   25.13 1.20   78.75

0.25 0.50   25.13 1.75 101.42

0.32 0.50   25.13 2.49 121.17

280.00 0.18 0.50   43.10 1.57   87.72

0.25 0.50   43.10 1.95 112.97

0.32 0.50   43.10 2.89 134.97

450.00 0.18 0.50   69.27 1.23   96.45

0.25 0.50   69.27 1.73 124.22

0.32 0.50   69.27 2.37 148.41

560.00 0.18 0.50   84.45 1.65 100.35

0.25 0.50   84.45 1.71 129.23

0.32 0.50   84.45 2.29 154.41

710.00 0.18 0.50 107.07 1.14 105.23

0.25 0.50 107.07 1.62 135.52

0.32 0.50 107.07 2.27 161.91

Table 4 Experimental machining data for Aluminum.
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plot in which deviation has a minimum value is the most effective value 
for dependent values. To find an effective value, only one output factor can 
be considered. In my observation, the surface finish factor is considered.

Figure 12a, b shows that the graph has the lowest deviation (0.023) 
with respect to the predicted value and it has the positive lowest residuals. 
So, it should be the most influential parameter for surface finish for a 
cast iron material workpiece. Figure 13a, b shows that the graph has 

the lowest deviation (0.024) with respect to the predicted value and it 
has the positive lowest residuals. So it should be the most influential 
parameter for surface finish for a mild steel material workpiece.  
Figure 14a, b shows that the graph has the lowest deviation (0.073) 
with respect to the predicted value and it has positive lowest residuals. 
So it should be the most influential parameter for surface finish for an 
aluminum material workpiece.

Table 5 Experimental machining data for cast iron.

Spindle speed (RPM) Feed (mm/rev) Depth of cut (mm) Cutting speed (m/min) Ra (µm) Tool life (min)

50.00 0.18 0.50     9.42   8.83 100.87

0.25 0.50     9.42   7.90 131.19

0.32 0.50     9.42   8.75 157.83

160.00 0.18 0.50   30.16   8.66 139.70

0.25 0.50   30.16   9.79 181.69

0.32 0.50   30.16   9.81 218.59

280.00 0.18 0.50   51.90   6.12 162.63

0.25 0.50   51.90   8.39 211.52

0.32 0.50   51.90 10.62 254.47

450.00 0.18 0.50   83.41   7.76 185.74

0.25 0.50   83.41   7.56 241.57

0.32 0.50   83.41   8.19 290.63

560.00 0.18 0.50 102.04   6.68 196.53

0.25 0.50 102.04   6.45 255.60

0.32 0.50 102.04   9.52 307.50

710.00 0.18 0.50 129.37   6.99 210.03

0.25 0.50 129.37   8.00 273.16

0.32 0.50 129.37 10.66 328.63

1400.00 0.18 0.50 250.70   6.05 252.77

0.25 0.50 250.70   8.51 328.75

0.32 0.50 250.70   6.00 395.51

1400 HSS 0.18 0.50 250.70   4.94   41.66

0.25 0.50 250.70   8.69   54.18

0.32 0.50 250.70 11.14   65.18

Spindle speed (RPM) Feed (mm/rev) Depth of cut (mm) Cutting speed (m/min) Ra (µm) Tool life (min)

2240.00 0.18 0.50 330.75 1.36 131.86

0.25 0.50 330.75 5.15 169.81

0.32 0.50 330.75 3.71 202.88

2240 HSS 0.18 0.50 330.75 5.72   46.55

0.25 0.50 330.75 7.39   59.95

0.32 0.50 330.75 9.36   71.62

Table 4 (Continued ).
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Figure 11 For all the three material blended plots of (a) surface finish plot for cutting speed v/s surface roughness, (b) surface finish plot 
for feed v/s surface roughness, (c) tool life plot for cutting speed v/s tool life, and (d) tool life plot for feed v/s tool life.

a

b

Figure 12 (a) and (b) Linear regression algorithm plot for cast iron 
material Ra v/s cutting speed.

a

b

Figure 13 (a) and (b) Linear regression algorithm plot for mild steel 
material Ra v/s cutting speed.
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Quantitative comparison of results with significant findings: The sur-
face finish achieved for aluminum material was 1.98 µm at a cutting speed 
of 43.10 m/min, for mild steel material it was 12 µm at a cutting speed of 
25.13 m/min, and for cast iron material it was 8.45 µm at a cutting speed 
of 30.16 m/min. The surface finish obtained using the proposed approach 
was significantly better than the conventional manual turning operations.

VALIDATION OF RESULTS

Automatic machining
A tachometer is used to check the motor speed and for distance and 
diameter control according to the program is also accurate, which is 
measured by the Vernier scale. On automation setup, machining for these 
three optimum parameters with respect to three materials is done. From 
that surface finish reading was observed. Reading’s data is given in the 
table. By incorporating tool life data into a machine learning algorithm, 
the optimal point is identified. Analyzing the table data reveals that the 
outcomes display fewer discrepancies. So, the automatic turning operation 
system is worked to a better extent. And it’s also accurate in machining.

Generally, the surface finish depends on many aspects. But in a 
conventional machine, three cutting parameters are highly effective. And 
these lesser differences in reading occurred because of gear’s backlash, 
the tearing and wearing of many working entities due to a lack of main-
tenance, etc. In all machining experiments, tool sharpening is done after 
every experiment.

At a cutting speed of 43.10 m/min, the surface finish achieved for 
aluminum material was 1.98 µm. In the case of mild steel material, the 
surface finish was 12 µm at a cutting speed of 25.13 m/min. Similarly, 
for cast iron material, the surface finish was 8.45 µm at a cutting speed 
of 30.16 m/min.

Table 6 Observation table for cast iron, mild steel, and aluminum by using a machine learning approach.

Observation for cast iron Observation for mild steel Observation for aluminum

Sr. No Predicted Y Residuals Predicted Y Residuals Predicted Y Residuals

1 8.778702993 0.047963674 12.34538503 0.904614972 1.93327865 −0.576612

2 8.778702993 −0.882036326 12.34538503 0.584614972 1.93327865 −0.1899453

3 8.778702993 −0.032036326 12.34538503 1.762114972 1.93327865 0.51005468

4 8.633311168 0.023355498 11.44559272 0.124407282 1.905535497 −0.7055355

5 8.633311168 1.156688832 11.44559272 1.824407282 1.905535497 −0.1588688

6 8.633311168 1.180022165 11.44559272 0.024407282 1.905535497 0.58779784

7 8.480870043 −2.364203376 10.50980871 −3.409808714 1.876682618 −0.310016

8 8.480870043 −0.090870043 10.50980871 −1.956475381 1.876682618 0.07331738

9 8.480870043 2.142463291 10.50980871 0.236857952 1.876682618 1.01331738

10 8.259918527 −0.503251861 9.14703236 −4.790365693 1.834664351 −0.601331

11 8.259918527 −0.696585194 9.14703236 −2.520365693 1.834664351 −0.1079977

12 8.259918527 −0.069918527 9.14703236 2.016300973 1.834664351 0.53283565

13 8.129286176 −1.452619509 8.356851112 −2.140184446 1.810300819 −0.1603008

14 8.129286176 −1.679286176 8.356851112 1.443148888 1.810300819 −0.0969675

15 8.129286176 1.387380491 8.356851112 2.639815554 1.810300819 0.48303251

16 7.937633316 −0.950966649 7.178941178 0.381058822 1.773982509 −0.6339825

17 7.937633316 0.059033351 7.178941178 0.821058822 1.773982509 −0.1514825

18 7.937633316 2.724866684 7.178941178 2.054392155 1.773982509 0.49268416

a

b

Figure 14 (a) and (b) Linear regression algorithm plot for aluminum 
material Ra v/s cutting speed.
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The novelty of using automation and machine learning to maximize 
tool use in turning centers for better surface finish lies in the integra-
tion of two advanced technologies in the manufacturing process. 
Automation allows for the reduction of human error and increases the 
efficiency of machining operations, while machine learning enables 
the identification of optimal parameters for machining. By combin-
ing these technologies, the research aims to achieve a better surface 
finish and extend the tool life, which could lead to cost savings and 
improved product quality. Additionally, the study focuses on using 
machine learning in conjunction with actual experimental data rather 
than relying on predictive models or handbook information, which is 
a unique approach to the problem.

Benefits of the research
1. � Improved surface finish: The use of automation and machine 

learning in turning centers leads to better surface finishes, which 
can increase the quality of products and reduce the need for post-
processing.

2. � Tool life maximization: The research work helps in maximizing the 
tool life, which reduces the cost of tool replacement and also saves 
time in tool changeovers.

3. � Reduced downtime: The integration of the PLC with the machine 
and the use of a supervised machine learning algorithm help to 

reduce downtime, leading to increased productivity and reduced 
costs.

4. � Potential for automation: The research work paves the way for turning 
centers to be changed into fully automated systems, which can elimi-
nate the need for G-code and other manual programming methods.

Shortcomings
1. � Limited materials: The research work focuses on only three materials, 

namely aluminum, mild steel, and cast iron. The results may not be 
applicable to other materials, and further research may be needed to 
generalize the findings.

2. � Limited tool types: The research work uses only one type of tool, which 
may not be representative of all tools. Further research is required to 
determine the applicability of the findings to other tool types.

Future research
1. � The research work can be expanded to include a more extensive range 

of materials and tool types to generalize the findings.
2. � Further research can be conducted to investigate the impact of other 

cutting parameters, such as cutting fluid, on the surface finish.
3. � The integration of artificial intelligence techniques, such as deep learn-

ing, can be explored to further improve the accuracy of the machine 
learning algorithm.

Table 7 Optimum cutting parameters for machining operation.

Cast iron Mild steel Aluminum

Spindle speed (RPM)
Feed  

(mm/rev)
Depth of  
cut (mm)

Cutting speed  
(m/min) Ra (µm)

Cutting speed  
(m/min) Ra (µm)

Cutting speed 
(m/min) Ra (µm)

50.00 0.18 0.50   9.42   8.83   7.85 13.25   7.85 1.36

0.25 0.50   9.42   7.90   7.85 12.93   7.85 1.74

0.32 0.50   9.42   8.75   7.85 14.11   7.85 2.44

160.00 0.18 0.50 30.16   8.66 25.13 11.57 25.13 1.20

0.25 0.50 30.16   9.79 25.13 13.27 25.13 1.75

0.32 0.50 30.16   9.81 25.13 11.47 25.13 2.49

280.00 0.18 0.50 51.90   6.12 43.10   7.10 43.10 1.57

0.25 0.50 51.90   8.39 43.10   8.55 43.10 1.95

0.32 0.50 51.90 10.62 43.10 10.75 43.10 2.89

Table 8 Validation of turning center results with an automatic lathe (with PLC).

Spindle speed (RPM) Feed (mm/rev) Depth of cut (mm) Cutting speed (m/min) Surface finish (Ra µm) Surface finish (Ra µm)

Aluminum Experiment

280 0.25 0.50 43.10   1.98   1.95

Mild steel

160 0.32 0.50 25.13 12.00 11.47

Cast iron

160 0.18 0.50 30.16   8.45   8.66
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4. � The applicability of the findings to other types of machines, such as 
milling machines and grinders, can be investigated.

CONCLUSION
The incorporation of machine learning algorithms and automation of the 
selection of optimum parameters for different materials can improve the 
accuracy and efficiency of the turning operation system. The results of 
the validation of the turning center results with the automatic lathe (with 
PLC) show that the automatic turning operation system is more accurate 
and consistent in achieving the desired surface finish. The following 
points are concluded:

 � The difference between the surface finish (Ra) values for manual and 
automatic turning operations is relatively small.

 � The retrofitted lathe worked without G-code or any other commanding 
coding system for turning operations. The PLC directly controls the 
motor with the help of an integrating circuit and downtime of the 
machine is reduced.

 � Automation and machine learning can be used to maximize tool use 
in turning centers and improve surface finish.

 � Automatic turning operations with a PLC-controlled motor showed 
relatively small differences in surface finish compared to manual 
turning operations.

 � Retrofitted lathes with integrated circuits and PLC control can reduce 
downtime and improve efficiency.

 � Supervised machine learning algorithms can be used with ex-
periment data to identify optimal turning parameters for different 
materials.

 � This approach has the potential to transform all CNC machines and 
lathes into fully automated systems without the need for G-code.
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